Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lightweight Wi-Fi Fingerprinting with a Novel RSS Clustering Algorithm

Quezada-Gaibor, Darwin; Torres-Sospedra, Joaquín; Nurmi, Jari; Koucheryavy, Yevgeny; Huerta, Joaquin (2021)

 
Avaa tiedosto
Lightweight_Wi_Fi_Fingerprinting.pdf (223.7Kt)
Lataukset: 



Quezada-Gaibor, Darwin
Torres-Sospedra, Joaquín
Nurmi, Jari
Koucheryavy, Yevgeny
Huerta, Joaquin
2021

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/IPIN51156.2021.9662612
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202202252169

Kuvaus

Peer reviewed
Tiivistelmä
Nowadays, several indoor positioning solutions sup-port Wi-Fi and use this technology to estimate the user position. It is characterized by its low cost, availability in indoor and outdoor environments, and a wide variety of devices support Wi-Fi technology. However, this technique suffers from scalability problems when the radio map has a large number of reference fingerprints because this might increase the time response in the operational phase. In order to minimize the time response, many solutions have been proposed along the time. The most common solution is to divide the data set into clusters. Thus, the incoming fingerprint will be compared with a specific number of samples grouped by, for instance similarity (clusters). Many of the current studies have proposed a variety of solutions based on the modification of traditional clustering algorithms in order to provide a better distribution of samples and reduce the computational load. This work proposes a new clustering method based on the maximum Received Signal Strength (RSS) values to join similar fingerprints. As a result, the proposed fingerprinting clustering method outperforms three of the most well-known clustering algorithms in terms of processing time at the operational phase of fingerprinting.
Kokoelmat
  • TUNICRIS-julkaisut [20263]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste