Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional Sparse Support Estimator Network (CSEN): From Energy-Efficient Support Estimation to Learning-Aided Compressive Sensing

Yamac, Mehmet; Ahishali, Mete; Kiranyaz, Serkan; Gabbouj, Moncef (2021)

 
Avaa tiedosto
Convolutional_Sparse_Support_Estimator_Network_CSEN_From_Energy_Efficient_Support_Estimation_to_Learning_Aided_Compressive_Sensing.pdf (3.356Mt)
Lataukset: 



Yamac, Mehmet
Ahishali, Mete
Kiranyaz, Serkan
Gabbouj, Moncef
2021

IEEE Transactions on Neural Networks and Learning Systems
9484349
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TNNLS.2021.3093818
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202205054397

Kuvaus

Peer reviewed
Tiivistelmä
<p>Support estimation (SE) of a sparse signal refers to finding the location indices of the nonzero elements in a sparse representation. Most of the traditional approaches dealing with SE problems are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery (SR) techniques to obtain support sets instead of directly mapping the nonzero locations from denser measurements (e.g., compressively sensed measurements). This study proposes a novel approach for learning such a mapping from a training set. To accomplish this objective, the convolutional sparse support estimator networks (CSENs), each with a compact configuration, are designed. The proposed CSEN can be a crucial tool for the following scenarios: 1) real-time and low-cost SE can be applied in any mobile and low-power edge device for anomaly localization, simultaneous face recognition, and so on and 2) CSEN&#x2019;s output can directly be used as &#x201C;prior information,&#x201D; which improves the performance of sparse SR algorithms. The results over the benchmark datasets show that state-of-the-art performance levels can be achieved by the proposed approach with a significantly reduced computational complexity.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20711]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste