Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mixture of Experts Approach for Piecewise Modeling and Linearization of RF Power Amplifiers

Brihuega, Alberto; Abdelaziz, Mahmoud; Anttila, Lauri; Li, Yue; Zhu, Anding; Valkama, Mikko (2021)

 
Avaa tiedosto
Mixture_of_Experts_Approach_for_Piecewise_Modeling_and_Linearization_of_RF_Power_Amplifiers.pdf (7.113Mt)
Lataukset: 



Brihuega, Alberto
Abdelaziz, Mahmoud
Anttila, Lauri
Li, Yue
Zhu, Anding
Valkama, Mikko
2021

IEEE Transactions on Microwave Theory and Techniques
doi:10.1109/TMTT.2021.3098867
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202110067412

Kuvaus

Peer reviewed
Tiivistelmä
<p>Piecewise behavioral models are commonly adopted for modeling and linearization of RF power amplifiers (PAs) that exhibit strong amplitude-dependent nonlinear distortion characteristics, as global polynomial approximations tend to underperform in such scenarios. In this article, we consider a new piecewise model for PAs based on the mixture of experts (ME) approach, which builds on a probabilistic model that allows the different submodels to cooperate--as opposed to operating in an independent fashion that is commonly the case in existing reference methods. We first introduce the ME framework theory while also extend it such that it can be applied to model complex baseband signals and nonlinearities. Then, we show how the ME model allows overcoming some of the intrinsic shortcomings that existing piecewise behavioral models commonly exhibit, which translates into improved modeling accuracy and improved linearization performance. Furthermore, the extension of the ME approach to a tree-structured regression model, referred to as the hierarchical ME model, is also introduced and shown to provide further performance improvements over the basic ME approach. The proposed solutions are validated with extensive RF measurements, covering both PA direct modeling and digital predistortion (DPD)-based linearization, on a gallium nitride (GaN) load-modulated balanced PA, on a GaN Doherty PA, and on a class AB GaN high electron mobility transistor PA, while being compared against several state-of-the-art piecewise methods. The results demonstrate that the ME framework-based models outperform the state of the art.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20188]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste