Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptation and Attention for Neural Video Coding

Zou, Nannan; Zhang, Honglei; Cricri, Francesco; Youvalari, Ramin G.; Tavakoli, Hamed R.; Lainema, Jani; Aksu, Emre; Hannuksela, Miska; Rahtu, Esa (2021)

 
Avaa tiedosto
2112.08767.pdf (310.3Kt)
Lataukset: 



Zou, Nannan
Zhang, Honglei
Cricri, Francesco
Youvalari, Ramin G.
Tavakoli, Hamed R.
Lainema, Jani
Aksu, Emre
Hannuksela, Miska
Rahtu, Esa
2021

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ISM52913.2021.00047
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202211088245

Kuvaus

Peer reviewed
Tiivistelmä
<p>Neural image coding represents now the state-of-The-Art image compression approach. However, a lot of work is still to be done in the video domain. In this work, we propose an end-To-end learned video codec that introduces several architectural novelties as well as training novelties, revolving around the concepts of adaptation and attention. Our codec is organized as an intra-frame codec paired with an inter-frame codec. As one architectural novelty, we propose to train the inter-frame codec model to adapt the motion estimation process based on the resolution of the input video. A second architectural novelty is a new neural block that combines concepts from split-Attention based neural networks and from DenseNets. Finally, we propose to overfit a set of decoder-side multiplicative parameters at inference time. Through ablation studies and comparisons to prior art, we show the benefits of our proposed techniques in terms of coding gains. We compare our codec to VVC/H.266 and RLVC, which represent the state-of-The-Art traditional and end-To-end learned codecs, respectively, and to the top performing end-To-end learned approach in 2021 CLIC competition, E2E_T_OL. Our codec clearly outperforms E2E_T_OL, and compare favorably to VVC and RLVC in some settings. </p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste