Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

How to explain AI systems to end users: a systematic literature review and research agenda

Laato, Samuli; Tiainen, Miika; Najmul Islam, A. K.M.; Mäntymäki, Matti (2022-05-02)

 
Avaa tiedosto
10_1108_INTR_08_2021_0600.pdf (1.112Mt)
Lataukset: 



Laato, Samuli
Tiainen, Miika
Najmul Islam, A. K.M.
Mäntymäki, Matti
02.05.2022

INTERNET RESEARCH
doi:10.1108/INTR-08-2021-0600
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202206205737

Kuvaus

Peer reviewed
Tiivistelmä
<p>Purpose: Inscrutable machine learning (ML) models are part of increasingly many information systems. Understanding how these models behave, and what their output is based on, is a challenge for developers let alone non-technical end users. Design/methodology/approach: The authors investigate how AI systems and their decisions ought to be explained for end users through a systematic literature review. Findings: The authors’ synthesis of the literature suggests that AI system communication for end users has five high-level goals: (1) understandability, (2) trustworthiness, (3) transparency, (4) controllability and (5) fairness. The authors identified several design recommendations, such as offering personalized and on-demand explanations and focusing on the explainability of key functionalities instead of aiming to explain the whole system. There exists multiple trade-offs in AI system explanations, and there is no single best solution that fits all cases. Research limitations/implications: Based on the synthesis, the authors provide a design framework for explaining AI systems to end users. The study contributes to the work on AI governance by suggesting guidelines on how to make AI systems more understandable, fair, trustworthy, controllable and transparent. Originality/value: This literature review brings together the literature on AI system communication and explainable AI (XAI) for end users. Building on previous academic literature on the topic, it provides synthesized insights, design recommendations and future research agenda.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20173]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste