Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computationally Efficient Fixed Switching Frequency Direct Model Predictive Control

Yang, Qifan; Karamanakos, Petros; Tian, Wei; Gao, Xiaonan; Li, Xinyue; Geyer, Tobias; Kennel, Ralph (2021)

 
Avaa tiedosto
TPEL_Gradient_DMPC_2L_IM_Final.pdf (2.436Mt)
Lataukset: 



Yang, Qifan
Karamanakos, Petros
Tian, Wei
Gao, Xiaonan
Li, Xinyue
Geyer, Tobias
Kennel, Ralph
2021

IEEE Transactions on Power Electronics
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TPEL.2021.3114979
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202111188493

Kuvaus

Peer reviewed
Tiivistelmä
<p>This paper presents a direct model predictive control (MPC) method for drive systems with superior steady-state and dynamic performance. Specifically, the discussed MPC algorithm achieves a steady-state behavior that is similar or better than that of a linear controller with a dedicated modulator, and fast transient responses that characterize direct controllers. Moreover, it ensures a fixed switching frequency by allowing for one switching transition per phase and sampling interval. Furthermore, the controller utilizes the stator current gradient to predict the evolution of the drive system within the prediction horizon. To find the optimal switching time instants-and thus ensure favorable performance-the control and modulation problems are formulated in one computational stage as a constrained quadratic program (QP). To solve the latter within a few microseconds, a computationally efficient QP solver based on a gradient method is proposed that enables the real-time implementation of the presented algorithm. To further alleviate the computational demands of the proposed method, a mechanism that can identify suboptimal switching sequences at the very early stages of the optimization process is proposed. The effectiveness of the proposed control scheme is experimentally verified on a 3 kW drive system consisting of a two-level inverter and an induction machine.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20210]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste