Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recent advances in machine learning for maximal oxygen uptake (VO<sub>2</sub> max) prediction: A review

Ashfaq, Atiqa; Cronin, Neil; Müller, Philipp (2022-01)

 
Avaa tiedosto
1_s2.0_S235291482200017X_main.pdf (643.0Kt)
Lataukset: 



Ashfaq, Atiqa
Cronin, Neil
Müller, Philipp
01 / 2022

Informatics in Medicine Unlocked
100863
doi:10.1016/j.imu.2022.100863
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202204203316

Kuvaus

Peer reviewed
Tiivistelmä
<p>Maximal oxygen uptake (VO<sub>2</sub> max) is the maximum amount of oxygen attainable by a person during exercise. VO<sub>2</sub> max is used in different domains including sports and medical sciences and is usually measured during an incremental treadmill or cycle ergometer test. The drawback of directly measuring VO<sub>2</sub> max using the maximal test is that it is expensive and requires a fixed and controlled protocol. During the last decade, various machine learning models have been developed for VO<sub>2</sub> max prediction and numerous studies have attempted to predict VO<sub>2</sub> max using data from submaximal and non-exercise tests. This article gives an overview of the machine learning models developed over the past five years (2016–2021) for the prediction of VO<sub>2</sub> max. Multiple linear regression, support vector machine, artificial neural network and multilayer perceptron are some of the techniques that have been used to build predictive models using different combinations of predictor variables. Model performance is generally assessed using correlation coefficient (R-value), standard error of estimate (SEE) and root mean squared error (RMSE), computed between ground truth and predicted values. The findings of this review indicate that models using ANN typically outperform other machine learning techniques. Moreover, the predictor variables used to build the model have a large influence on the model's predictive performance.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste