Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of Predictive Coding Models for Phonemic Representation Learning in Small Datasets

Cruz Blandon, Maria Andrea; Räsänen, Okko (2020)

 
Avaa tiedosto
analysis_of_predictive_coding_models_for_phonemic_representation_learning_in_small_datasets.pdf (356.0Kt)
Lataukset: 

URI
https://openreview.net/forum?id=cnLz5ckGs1y


Cruz Blandon, Maria Andrea
Räsänen, Okko
2020

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202202071868

Kuvaus

Peer reviewed
Tiivistelmä
Neural network models using predictive coding are interesting from the viewpoint of computational modelling of human language acquisition, where the objective is to understand how linguistic units could be learned from speech without any labels. Even though several promising predictive coding -based learning algorithms have been proposed in the literature, it is currently unclear how well they generalise to different languages and training dataset sizes. In addition, despite that such models have shown to be effective phonemic feature learners, it is unclear whether minimisation of the predictive loss functions of these models also leads to optimal phoneme-like representations. The present study investigates the behaviour of two predictive coding models, Autoregressive Predictive Coding and Contrastive Predictive Coding, in a phoneme discrimination<br/>task (ABX task) for two languages with different dataset sizes. Our experiments show a strong correlation between the autoregressive loss and the phoneme discrimination scores with the two datasets. However, to our surprise, the CPC model<br/>shows rapid convergence already after one pass over the training data, and, on average, its representations outperform those of APC on both languages.
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste