Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital Predistortion with Compressed Observations for Cloud-Based Learning

Fischer-Bühner, Arne; Matus, Emil; Gomony, Manil Dev; Anttila, Lauri; Fettweis, Gerhard; Valkama, Mikko (2021-10-19)

 
Avaa tiedosto
Digital_Predistortion_with_Compressed_Observations_for_Cloud_based_Learning.pdf (490.5Kt)
Lataukset: 



Fischer-Bühner, Arne
Matus, Emil
Gomony, Manil Dev
Anttila, Lauri
Fettweis, Gerhard
Valkama, Mikko
19.10.2021

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/SiPS52927.2021.00016
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202112038875

Kuvaus

Peer reviewed
Tiivistelmä
This paper presents a novel system architecture for digital predistortion (DPD) of power amplifiers (PA), where the training of the DPD model is done in a remote compute infrastructure i.e. cloud or a distributed unit (DU). In beyond-5G systems it is no longer feasible to perform computationally intensive tasks such as DPD training locally in the radio unit front-end which has stringent power consumption requirements. Thus, we propose to split the DPD system and perform the compute-intensive DPD training in the DU where more processing resources are available. To enable the distant training, the observed PA output, i.e. the observation signal, must be available, however, sending the data-intensive observation signal to the DU adds additional communication overhead to the system. In this paper, a low-complexity compression method is proposed to reduce the bit-resolution of the observation signal by removing the known linear part in the observation to use fewer bits to represent the remaining information. Our numerical simulations show a reduction of 50 % of bits/samples for the accurate training of the DPD model. The DPD performance was evaluated based on simulation for a strongly driven PA operated at 28 GHz with a 200 MHz wide OFDM signal.
Kokoelmat
  • TUNICRIS-julkaisut [20189]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste