Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Directional Growth of Human Neuronal Axons in a Microfluidic Device with Nanotopography on Azobenzene-Based Material

Ristola, Mervi; Fedele, Chiara; Hagman, Sanna; Sukki, Lassi; Kapucu, Fikret Emre; Mzezewa, Ropafadzo; Hyvärinen, Tanja; Kallio, Pasi; Priimagi, Arri; Narkilahti, Susanna (2021)

 
Avaa tiedosto
admi.202100048.pdf (7.782Mt)
Lataukset: 



Ristola, Mervi
Fedele, Chiara
Hagman, Sanna
Sukki, Lassi
Kapucu, Fikret Emre
Mzezewa, Ropafadzo
Hyvärinen, Tanja
Kallio, Pasi
Priimagi, Arri
Narkilahti, Susanna
2021

Advanced Materials Interfaces
2100048
doi:10.1002/admi.202100048
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202105265447

Kuvaus

Peer reviewed
Tiivistelmä
<p>Axonal dysfunction and degeneration are important pathological features of central nervous system (CNS) diseases and traumas, such as Alzheimer's disease, traumatic brain injury, ischemic stroke and spinal cord injury. Engineered microfluidic chips combined with human pluripotent stem cell (hPSC)-derived neurons provide valuable tools for targeted in vitro research on axons to improve understanding of disease mechanisms and enhance drug development. Here, a polydimethylsiloxane (PDMS) microfluidic chip integrated with a light patterned substrate is utilized to achieve both isolated and unidirectional axonal growth of hPSC-derived neurons. The isolation of axons from somas and dendrites and robust axonal outgrowth to adjacent, axonal compartment, is achieved by optimized cross-sectional area and length of PDMS microtunnels in the microfluidic device. In the axonal compartment, the photoinscribed nanotopography on a thin film of azobenzene-containing molecular glass efficiently guides the growth of axons. Integration of nanotopographic patterns with a compartmentalized microfluidic chip creates a human neuron-based model that supports superior axonal alignment in an isolated microenvironment. The practical utility of the chip by studying oxygen-glucose deprivation-induced damage for the isolated and aligned axons is demonstrated here. The created chip model represents a sophisticated platform and a novel tool for enhanced and long-term axon-targeted in vitro studies.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste