Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network

Salmela, Lauri; Tsipinakis, Nikolaos; Foi, Alessandro; Billet, Cyril; Dudley, John M.; Genty, Goëry (2021)

 
Avaa tiedosto
Predicting_ultrafast_nonlinear.pdf (1.624Mt)
Predicting_ultrafast_nonlinear.pdf (1.624Mt)
Lataukset: 



Salmela, Lauri
Tsipinakis, Nikolaos
Foi, Alessandro
Billet, Cyril
Dudley, John M.
Genty, Goëry
2021

Nature Machine Intelligence
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1038/s42256-021-00297-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202111298746

Kuvaus

Peer reviewed
Tiivistelmä
<p>The propagation of ultrashort pulses in optical fibre plays a central role in the development of light sources and photonic technologies, with applications from fundamental studies of light–matter interactions to high-resolution imaging and remote sensing. However, short pulse dynamics are highly nonlinear, and optimizing pulse propagation for application purposes requires extensive and computationally demanding numerical simulations. This creates a severe bottleneck in designing and optimizing experiments in real time. Here, we present a solution to this problem using a recurrent neural network to model and predict complex nonlinear propagation in optical fibre, solely from the input pulse intensity profile. We highlight particular examples in pulse compression and ultra-broadband supercontinuum generation, and compare neural network predictions with experimental data. We also show how the approach can be generalized to model other propagation scenarios for a wider range of input conditions and fibre systems, including multimode propagation. These results open up novel perspectives in the modelling of nonlinear systems, for the development of future photonic technologies and more generally in physics for studies in Bose–Einstein condensates, plasma physics and hydrodynamics.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20701]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste