Transfer Learning for Convolutional Indoor Positioning Systems
Klus, Roman; Klus, Lucie; Talvitie, Jukka; Pihlajasalo, Jaakko; Torres-Sospedra, Joaquín; Valkama, Mikko (2021)
Klus, Roman
Klus, Lucie
Talvitie, Jukka
Pihlajasalo, Jaakko
Torres-Sospedra, Joaquín
Valkama, Mikko
2021
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202201101160
https://urn.fi/URN:NBN:fi:tuni-202201101160
Kuvaus
Peer reviewed
Tiivistelmä
Fingerprinting is a widely used technique in indoor positioning, mainly due to its simplicity. Usually, this technique is used with the deterministic k- Nearest Neighbors (k-NN )algorithm. Utilizing a neural network model for fingerprinting positioning purposes can greatly improve the prediction speed compared to the k-NN approach, but requires a voluminous training dataset to achieve comparable performance. In many indoor positioning datasets, the number of samples is only at a level of hundreds, which results in poor performance of the neural network solution. In this work, we develop a novel algorithm based on a transfer learning approach, which combines samples from 15 different Wi-Fi RSS indoor positioning datasets, to train a single convolutional neural network model, which learns the common patterns in the combined data. The proposed model is then fine-tuned to optimally fit the individual databases. We show that the proposed solution reduces the positioning error by up to 25% compared to the benchmark model while reducing the number of outlier predictions.
Kokoelmat
- TUNICRIS-julkaisut [20161]