Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Machine Learning Techniques Applied to Traffic Prediction of Real Wireless Network

Alekseeva, Daria; Stepanov, Nikolai; Veprev, Albert; Sharapova, Alexandra; Lohan, Elena-Simona; Ometov, Aleksandr (2021-12-22)

 
Avaa tiedosto
Comparison_of_Machine_Learning_Techniques_Applied_to_Traffic_Prediction_of_Real_Wireless_Network.pdf (637.0Kt)
Lataukset: 



Alekseeva, Daria
Stepanov, Nikolai
Veprev, Albert
Sharapova, Alexandra
Lohan, Elena-Simona
Ometov, Aleksandr
22.12.2021

IEEE Access
doi:10.1109/access.2021.3129850
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202112038887

Kuvaus

Peer reviewed
Tiivistelmä
Today, the traffic amount is growing inexorably due to the increase in the number of devices on the network. Researchers analyze traffic by identifying sophisticated dependencies, anomalies, and novel traffic patterns to improve the system performance. One of the fast development niches in this domain is related to Classic and Deep Machine Learning techniques that are supposed to improve the network operation in the most complex heterogeneous environment. In this work, we first outline existing applications of Machine Learning in the communications domain and further list the most significant challenges and potential solutions while implementing those. Finally, we compare different classical methods predicting the traffic on the LTE network Edge by utilizing such techniques as Linear Regression, Gradient Boosting, Random Forest, Bootstrap Aggregation (Bagging), Huber Regression, Bayesian Regression, and Support Vector Machines (SVM). We develop the corresponding Machine Learning environment based on a public cellular traffic dataset and present a comparison table of the quality metrics and execution time for each model. After the analysis, the SVM method proved to allow for a much faster training compared to other algorithms. Gradient Boosting showed the best quality of predictions as it has the most efficient data determination. Random forest shows the worst result since it depends on the number of features that may be limited. The probabilistic approach-based Bayesian regression method showed slightly worse results than Gradient Boosting, but its training time was shorter. The performance evaluation demonstrated good results for linear models with the Huber loss function, which optimizes the model parameters better. As a standalone contribution, we offer the source code of the analyzed algorithms in Open Access.
Kokoelmat
  • TUNICRIS-julkaisut [20517]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste