Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads

Jahanpour, Alireza; Kouhia, Reijo (2021)

 
Avaa tiedosto
an_explicit_solution_for_Inelastic_buckling_of_rectangular_plates.pdf (2.807Mt)
Lataukset: 



Jahanpour, Alireza
Kouhia, Reijo
2021

ACTA MECHANICA
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/s00707-020-02926-x
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202307037045

Kuvaus

Peer reviewed
Tiivistelmä
<p>In this study, the inelastic buckling equation of a thin plate subjected to all in-plane loads is analytically solved and the inelastic buckling coefficient is explicitly estimated. Using the deformation theory of plasticity, a multiaxial nonlinear stress–strain curve is supposed which is described by the Ramberg–Osgood representation and the von Mises criterion. Due to buckling, the variations are applied on the secant modulus, the Poisson’s ratio and the normal and shear strains. Then, the inelastic buckling equation of a perfect thin rectangular plate subjected to combined biaxial and shear loads is completely developed. Applying the generalized integral transform technique, the equation is straightforwardly converted to an eigenvalue problem in a dimensionless form. Initially, a geometrical solution and an algorithm are presented to find the lowest inelastic buckling coefficient (k<sub>s</sub>). The solution is successfully validated by some results in the literature. Then, a semi-analytical solution is proposed to simplify the calculation of k<sub>s</sub>. The method of linear least squares is applied in two stages on the obtained results and an approximate polynomial equation is found which is usually solved by trial and error. The obtained results show good agreement between the proposed semi-analytical and geometrical methods, so that the differences are < 12%. The semi-analytical solution is easily programmed in usual scientific calculators and can be applied for practical purposes.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20583]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste