Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of renewable fuel and exhaust aftertreatment on primary and secondary emissions from a modern heavy-duty diesel engine

Gren, Louise; Malmborg, Vilhelm B.; Falk, John; Markula, Lassi; Novakovic, Maja; Shamun, Sam; Eriksson, Axel C.; Kristensen, Thomas B.; Svenningsson, Birgitta; Tunér, Martin; Karjalainen, Panu; Pagels, Joakim (2021-08)

 
Avaa tiedosto
Effects_of_renewable_fuel_2021.pdf (4.836Mt)
Lataukset: 



Gren, Louise
Malmborg, Vilhelm B.
Falk, John
Markula, Lassi
Novakovic, Maja
Shamun, Sam
Eriksson, Axel C.
Kristensen, Thomas B.
Svenningsson, Birgitta
Tunér, Martin
Karjalainen, Panu
Pagels, Joakim
08 / 2021

Journal of Aerosol Science
105781
doi:10.1016/j.jaerosci.2021.105781
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202104304189

Kuvaus

Peer reviewed
Tiivistelmä
<p>Compared to petroleum diesel, renewable diesel fuels and exhaust aftertreatment systems can reduce primary exhaust emissions that are hazardous to human health and the environment. Secondary aerosol emissions which form upon atmospheric processing have, however, been less studied. This study aimed to quantify the impacts of replacing petroleum diesel with renewable fuels (hydrotreated vegetable oil [HVO] and rapeseed methyl ester [RME]) on primary and secondary aerosol emissions from a heavy-duty diesel engine at different stages of an exhaust aftertreatment system. Emission characterization was obtained by combining a battery of physical characterization techniques with chemical characterization using aerosol mass spectrometry. At engine-out measurements, RME and HVO reduced primary particulate matter (PM) emissions (for example equivalent black carbon [eBC]) and secondary aerosol production (studied with an oxidation flow reactor [OFR]) by mass compared to petroleum diesel. The diesel oxidation catalyst (DOC) reduced primary nucleation mode emissions, reduced the effective density of soot mode emissions, and reduced secondary particle production by mass. The DOC + a diesel particulate filter removed >99% of the particle number and eBC emissions. Volatile PM emissions (for example organic aerosol) were found to be distributed between the nucleation mode and soot mode for both primary and secondary emissions, to a degree that depends on both fuel type and aftertreatment. A high mass concentration of condensable species and a low condensation sink in the soot mode led to increased fractions of condensable species present in the nucleation mode. Aging in the OFR led to increases in particle effective density. Motoring the engine (running without combustion) showed that the nucleation mode originated primarily from lubricating oil, and nonvolatile nanoparticle emissions were identified down to 1.2 nm in particle size. In conclusion, replacing petroleum diesel with HVO and RME changes emission characteristics and can help reduce key aerosol emissions of relevance for adverse health and climate impact, especially for diesel engines with no or limited exhaust aftertreatment.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste