Regression plane concept for analysing continuous cellular processes with machine learning
Szkalisity, Abel; Piccinini, Filippo; Beleon, Attila; Balassa, Tamas; Varga, Istvan Gergely; Migh, Ede; Molnar, Csaba; Paavolainen, Lassi; Timonen, Sanna; Banerjee, Indranil; Ikonen, Elina; Yamauchi, Yohei; Andó, István; Peltonen, Jaakko; Pietiäinen, Vilja; Honti, Viktor; Horvath, Peter (2021-05-05)
Szkalisity, Abel
Piccinini, Filippo
Beleon, Attila
Balassa, Tamas
Varga, Istvan Gergely
Migh, Ede
Molnar, Csaba
Paavolainen, Lassi
Timonen, Sanna
Banerjee, Indranil
Ikonen, Elina
Yamauchi, Yohei
Andó, István
Peltonen, Jaakko
Pietiäinen, Vilja
Honti, Viktor
Horvath, Peter
05.05.2021
Nature Communications
2532
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202107076241
https://urn.fi/URN:NBN:fi:tuni-202107076241
Kuvaus
Peer reviewed
Tiivistelmä
Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics.
Kokoelmat
- TUNICRIS-julkaisut [20739]