Properties of commuting graphs over semidihedral groups
Cheng, Tao; Dehmer, Matthias; Emmert-Streib, Frank; Li, Yongtao; Liu, Weijun (2021-01-08)
Cheng, Tao
Dehmer, Matthias
Emmert-Streib, Frank
Li, Yongtao
Liu, Weijun
08.01.2021
Symmetry
103
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202101261697
https://urn.fi/URN:NBN:fi:tuni-202101261697
Kuvaus
Peer reviewed
Tiivistelmä
<p>This paper considers commuting graphs over the semidihedral group SD<sub>8n</sub> . We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n ≥ 15 or even n ≥ 2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD<sub>8n</sub> . We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.</p>
Kokoelmat
- TUNICRIS-julkaisut [20275]