Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smartphone Distance Estimation Based on RSSI-Fuzzy Classification Approach

Pascacio, Pavel; Casteleyn, Sven; Torres-Sospedra, Joaquin (2021)

 
Avaa tiedosto
Smartphone_Distance_Estimation_Based_on_RSSI_Fuzzy_Classification_Approach_1_.pdf (1.421Mt)
Lataukset: 



Pascacio, Pavel
Casteleyn, Sven
Torres-Sospedra, Joaquin
2021

9452226
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ICL-GNSS51451.2021.9452226
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202112078962

Kuvaus

Peer reviewed
Tiivistelmä
<p>Positioning people indoors has known an exponential growth in the last few years, especially thanks to Bluetooth Low Energy (BLE) technology and the Received Signal Strength Indicator (RSSI) technique. This approach is available in wearable devices, is easy to implement and has energy consumption advantages. However, the relative distance calculation is inaccurate, as the strength of BLE signals significantly fluctuates in indoor environments. Typical coping mechanisms, such as path-loss propagation models, require mathematical modeling and time-consuming calibration, that depend on the environment. In this paper, we propose a novel distance estimator based on RSSI-fuzzy classification of the BLE signals. Fuzzy-logic improves the robustness and accuracy of RSSI-based estimators, does not require an explicit propagation model and is easy and intuitive to (graphically) tune (using basic statistical analysis). The estimator's suitability and the feasibility to provide an easy implementation were experimentally demonstrated in two scenarios with real-world data. </p>
Kokoelmat
  • TUNICRIS-julkaisut [20724]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste