Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Plasma Protein Biomarker Strategy for Detection of Small Intestinal Neuroendocrine Tumors

Kjellman, Magnus; Knigge, Ulrich; Welin, Staffan; Thiis-Evensen, Espen; Gronbaek, Henning; Schalin-Jäntti, Camilla; Sorbye, Halfdan; Joergensen, Maiken Thyregod; Johanson, Viktor; Metso, Saara; Waldum, Helge; Søreide, Jon Arne; Ebeling, Tapani; Lindberg, Fredrik; Landerholm, Kalle; Wallin, Goran; Salem, Farhad; Del Pilar Schneider, Maria; Belusa, Roger (2021-08)

 
Avaa tiedosto
A_Plasma_Protein_Biomarker_Strategy_for_Detection.pdf (362.1Kt)
Lataukset: 



Kjellman, Magnus
Knigge, Ulrich
Welin, Staffan
Thiis-Evensen, Espen
Gronbaek, Henning
Schalin-Jäntti, Camilla
Sorbye, Halfdan
Joergensen, Maiken Thyregod
Johanson, Viktor
Metso, Saara
Waldum, Helge
Søreide, Jon Arne
Ebeling, Tapani
Lindberg, Fredrik
Landerholm, Kalle
Wallin, Goran
Salem, Farhad
Del Pilar Schneider, Maria
Belusa, Roger
08 / 2021

NEUROENDOCRINOLOGY
doi:10.1159/000510483
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202303092852

Kuvaus

Peer reviewed
Tiivistelmä
Background: Small intestinal neuroendocrine tumors (SI-NETs) are difficult to diagnose in the early stage of disease. Current blood biomarkers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid have low sensitivity (SEN) and specificity (SPE). This is a first preplanned interim analysis (Nordic non-interventional, prospective, exploratory, EXPLAIN study [NCT02630654]). Its objective is to investigate if a plasma protein multi-biomarker strategy can improve diagnostic accuracy (ACC) in SI-NETs. Methods: At the time of diagnosis, before any disease-specific treatment was initiated, blood was collected from patients with advanced SI-NETs and 92 putative cancer-related plasma proteins from 135 patients were analyzed and compared with the results of age- and sex-matched controls (n = 143), using multiplex proximity extension assay and machine learning techniques. Results: Using a random forest model including 12 top ranked plasma proteins in patients with SI-NETs, the multi-biomarker strategy showed SEN and SPE of 89 and 91%, respectively, with negative predictive value (NPV) and positive predictive value (PPV) of 90 and 91%, respectively, to identify patients with regional or metastatic disease with an area under the receiver operator characteristic curve (AUROC) of 99%. In 30 patients with normal CgA concentrations, the model provided a diagnostic SPE of 98%, SEN of 56%, and NPV 90%, PPV of 90%, and AUROC 97%, regardless of proton pump inhibitor intake. Conclusion: This interim analysis demonstrates that a multi-biomarker/machine learning strategy improves diagnostic ACC of patients with SI-NET at the time of diagnosis, especially in patients with normal CgA levels. The results indicate that this multi-biomarker strategy can be useful for early detection of SI-NETs at presentation and conceivably detect recurrence after radical primary resection.
Kokoelmat
  • TUNICRIS-julkaisut [22194]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste