Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A netnographic-based semantic analysis of tweet contents for stress management

Jussila, Jari; Alkhammash, Eman; Alghamdi, Norah Saleh; Madhala, Prashanth; Khan, Mohammad Ayoub (2021)

 
Avaa tiedosto
A_Netnographic_Based_Semantic_Analysis.pdf (995.6Kt)
Lataukset: 



Jussila, Jari
Alkhammash, Eman
Alghamdi, Norah Saleh
Madhala, Prashanth
Khan, Mohammad Ayoub
2021

Computers, Materials and Continua
doi:10.32604/cmc.2022.017284
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202109207161

Kuvaus

Peer reviewed
Tiivistelmä
<p>Social media platforms provide new value for markets and research companies. This article explores the use of social media data to enhance customer value propositions. The case study involves a company that develops wearable Internet of Things (IoT) devices and services for stress management. Netnography and semantic annotation for recognizing and categorizing the context of tweets are conducted to gain a better understanding of users' stress management practices. The aim is to analyze the tweets about stress management practices and to identify the context from the tweets. Thereafter, we map the tweets on pleasure and arousal to elicit customer insights. We analyzed a case study of a marketing strategy on the Twitter platform. Participants in the marketing campaign shared photos and texts about their stress management practices. Machine learning techniques were used to evaluate and estimate the emotions and contexts of the tweets posted by the campaign participants. The computational semantic analysis of the tweets was compared to the text analysis of the tweets. The content analysis of only tweet images resulted in 96% accuracy in detecting tweet context, while that of the textual content of tweets yielded an accuracy of 91%. Semantic tagging by Ontotext was able to detect correct tweet context with an accuracy of 50%.</p>
Kokoelmat
  • TUNICRIS-julkaisut [22194]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste