Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

System Simulation of Memristor Based Computation In Memory Platforms

BanaGozar, Ali; Vadivel, Kanishkan; Multanen, Joonas; Jääskeläinen, Pekka; Stuijk, Sander; Corporaal, Henk (2020)

 
Avaa tiedosto
System_Simulation_of_Memristor_2020.pdf (2.786Mt)
Lataukset: 



BanaGozar, Ali
Vadivel, Kanishkan
Multanen, Joonas
Jääskeläinen, Pekka
Stuijk, Sander
Corporaal, Henk
2020

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-030-60939-9_11
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202011278282

Kuvaus

Peer reviewed
Tiivistelmä
Processors based on the von Neumann architecture show inefficient performance on many emerging data-intensive workloads. Computation in-memory (CIM) tries to address this challenge by performing the computation on the data location. To realize CIM, memristors, that are deployed in a crossbar structure, are a promising candidate. Even though extensive research has been carried out on memristors at device/circuit-level, the implications of their integration as accelerators (CIM units) in a full-blown system are not studied extensively. To study that, we developed a simulator for memristor crossbar and its analog peripheries. This paper evaluates a complete system consisting of a Transport Triggered Architecture (TTA) based host core integrating one or more CIM units. This evaluation is based on a cycle-accurate simulation. For this purpose we designed a simulator which a) includes the memristor crossbar operations as well as its surrounding analog drivers, b) provides the required interface to the co-processing digital elements, and c) presents a micro-instruction set architecture (micro-ISA) that controls and operates both analog and digital components. It is used to assess the effectiveness of the CIM unit in terms of performance, energy, and area in a full-blown system. It is shown, for example, that the EDAP for the deep learning application, LeNet, is reduced by 84% in a full-blown system deploying memristor based crossbars.
Kokoelmat
  • TUNICRIS-julkaisut [20189]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste