DAL: A Deep Depth-Aware Long-term Tracker
Yan, Song; Qian, Yanlin; Lukežič, Alan; Kristan, Matej; Kämäräinen, Joni-Kristian; Matas, Jiří (2020)
Yan, Song
Qian, Yanlin
Lukežič, Alan
Kristan, Matej
Kämäräinen, Joni-Kristian
Matas, Jiří
2020
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202210277945
https://urn.fi/URN:NBN:fi:tuni-202210277945
Kuvaus
Peer reviewed
Tiivistelmä
The best RGBD trackers provide high accuracy but are slow to run. On the other hand, the best RGB trackers are fast but clearly inferior on the RGBD datasets. In this work, we propose a deep depth-aware long-term tracker that achieves state-of-the-art RGBD tracking performance and is fast to run. We reformulate deep discriminative correlation filter (DCF) to embed the depth information into deep features. Moreover, the same depth-aware correlation filter is used for target redetection. Comprehensive evaluations show that the proposed tracker achieves state-of-the-art performance on the Princeton RGBD, STC, and the newly-released CDTB benchmarks and runs 20 fps.
Kokoelmat
- TUNICRIS-julkaisut [19304]