Variational Neural Networks implementation in Pytorch and JAX
Oleksiienko, Illia; Tran, Dat Thanh; Iosifidis, Alexandros (2022-11)
Oleksiienko, Illia
Tran, Dat Thanh
Iosifidis, Alexandros
11 / 2022
Software Impacts
100431
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202212129074
https://urn.fi/URN:NBN:fi:tuni-202212129074
Kuvaus
Peer reviewed
Tiivistelmä
Bayesian Neural Networks consider a distribution over the network's weights, which provides a tool to estimate the uncertainty of a neural network by sampling different models for each input. Variational Neural Networks (VNNs) consider a probability distribution over each layer's outputs and generate parameters for it with the corresponding sub-layers. We provide two Python implementations of VNNs with PyTorch and JAX machine learning libraries that ensure reproducibility of the experimental results and allow implementing uncertainty estimation methods easily in other projects.
Kokoelmat
- TUNICRIS-julkaisut [19385]