Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Practicality of Stochastic Optimization in Imaging Inverse Problems

Tang, Junqi; Egiazarian, Karen; Golbabaee, Mohammad; Davies, Mike (2020)

 
Avaa tiedosto
The_Practicality_of_Stochastic_Optimization.pdf (1.818Mt)
Lataukset: 



Tang, Junqi
Egiazarian, Karen
Golbabaee, Mohammad
Davies, Mike
2020

IEEE Transactions on Computational Imaging
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TCI.2020.3032101
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202105195186

Kuvaus

Peer reviewed
Tiivistelmä
<p>In this work we investigate the practicality of stochastic gradient descent and its variants with variance-reduction techniques in imaging inverse problems. Such algorithms have been shown in the large-scale optimization and machine learning literature to have optimal complexity in theory, and to provide great improvement empirically over the deterministic gradient methods. However, in some tasks such as image deblurring, many of such methods fail to converge faster than the deterministic gradient methods, even in terms of epoch counts. We investigate this phenomenon and propose a theory-inspired mechanism for the practitioners to efficiently characterize whether it is beneficial for an inverse problem to be solved by stochastic optimization techniques or not. Using standard tools in numerical linear algebra, we derive conditions on the spectral structure of the inverse problem for being a suitable application of stochastic gradient methods. Particularly, if the Hessian matrix of an imaging inverse problem has a fast-decaying eigenspectrum, then our theory suggests that the stochastic gradient methods can be more advantageous than deterministic methods for solving such a problem. Our results also provide guidance on choosing appropriately the partition minibatch schemes, showing that a good minibatch scheme typically has relatively low correlation within each of the minibatches. Finally, we present numerical studies which validate our results.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste