Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time Phonocardiogram Anomaly Detection by Adaptive 1D Convolu‐ tional Neural Networks

Kiranyaz, Serkan; Zabihi, Morteza; Rad, Ali Bahrami; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef (2020-05-19)

 
Avaa tiedosto
1_s2.0_S0925231220309085_main.pdf (3.097Mt)
Lataukset: 



Kiranyaz, Serkan
Zabihi, Morteza
Rad, Ali Bahrami
Ince, Turker
Hamila, Ridha
Gabbouj, Moncef
19.05.2020

Neurocomputing
doi:10.1016/j.neucom.2020.05.063
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202008256649

Kuvaus

Peer reviewed
Tiivistelmä
The heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algorithm, 48 international teams competed in the PhysioNet (CinC) Challenge in 2016 over the largest benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and unsure – too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliberately on the anomaly detection problem while assuming a reasonably high Signal-to-Noise Ratio (SNR) on the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach, we aim to achieve the highest detection performance and real-time processing ability with significantly lower delay and computational complexity. The experimental results over the high-quality subset of the same benchmark dataset show that the proposed approach achieves both objectives. Furthermore, our findings reveal the fact that further improvements indeed require a personalized (patient-specific) approach to avoid major drawbacks of a global PCG classification approach.
Kokoelmat
  • TUNICRIS-julkaisut [20711]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste