Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reinforcement learning for improved UAV-based integrated access and backhaul operation

Tafintsev, Nikita; Moltchanov, Dmitri; Simsek, Meryem; Yeh, Shu Ping; Andreev, Sergey; Koucheryavy, Yevgeni; Valkama, Mikko (2020)

 
Avaa tiedosto
RL_ICC_2020.pdf (802.3Kt)
Lataukset: 



Tafintsev, Nikita
Moltchanov, Dmitri
Simsek, Meryem
Yeh, Shu Ping
Andreev, Sergey
Koucheryavy, Yevgeni
Valkama, Mikko
2020

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ICCWorkshops49005.2020.9145423
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202009307183

Kuvaus

Peer reviewed
Tiivistelmä
<p>There is a strong interest in utilizing commercial cellular networks to support unmanned aerial vehicles (UAVs) to send control commands and communicate heavy traffic. Cellular networks are well suited for offering reliable and secure connections to the UAVs as well as facilitating traffic management systems to enhance safe operation. However, for the full-scale integration of UAVs that perform critical and high-risk tasks, more advanced solutions are required to improve wireless connectivity in mobile networks. In this context, integrated access and backhaul (IAB) is an attractive approach for the UAVs to enhance connectivity and traffic forwarding. In this paper, we study a novel approach to dynamic associations based on reinforcement learning at the edge of the network and compare it to alternative association algorithms. Considering the average data rate, our results indicate that the reinforcement learning methods improve the achievable data rate. The optimal parameters of the introduced algorithm are highly sensitive to the donor next generation node base (DgNB) and UAV IAB node densities, and need to be identified beforehand or estimated via a stateful search. However, its performance nearly converges to that of the ideal scheme with a full knowledge of the data rates in dense deployments of DgNBs.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20143]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste