Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph-based metamodeling for characterizing cold metal transfer process performance

Nagarajan, Hari; Panicker, Suraj; Mokhtarian, Hossein; Remy-Lorit, Theo; Coatanea, Eric; Prodhon, Romaric; Jafarian, Hesam; Haapala, Karl R.; Chakraborti, Ananda (2019)

 
Avaa tiedosto
SSMS20190026-DL.ghiv5968.pdf (1022.Kt)
Lataukset: 



Nagarajan, Hari
Panicker, Suraj
Mokhtarian, Hossein
Remy-Lorit, Theo
Coatanea, Eric
Prodhon, Romaric
Jafarian, Hesam
Haapala, Karl R.
Chakraborti, Ananda
2019

Smart and Sustainable Manufacturing Systems
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1520/SSMS20190026
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202404254541

Kuvaus

Peer reviewed
Tiivistelmä
<p>Achieving predictable, reliable, and cost-effective operations in wire and arc additive manufacturing is a key concern during production of complex-shaped functional metallic components for demanding applications, such as those found in aerospace and automotive industries. A metamodel combining localized submodels of the different physical phenomena during welding can ensure stable material deposition. Such a metamodel would necessarily combine submodels from multiple domains, such as materials science, thermomechanical engineering, and process planning, and it would provide a holistic systems perspective of the modeled process. An approach using causal graph-based modeling and Bayesian networks is proposed to develop a metamodel for a test case using wire and arc additive manufacturing with cold metal transfer. The developed modeling approach is used to characterize the effect of manufacturing variables on product dimensional quality in the form of a causal graph. A quantitative simulation using Bayesian networks is applied to the causal graph to enable process parameter tuning. The Bayesian network inference mechanism predicts the effects of the parameters on results, whereas, conversely, with known targets, it can predict the required parameter values. Validation of the developed Bayesian network model is performed using experimental tests.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20724]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste