Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Information Theoretic Framework to Analyze Molecular Communication Systems Based on Statistical Mechanics

Akyildiz, Ian F.; Pierobon, Massimiliano; Balasubramaniam, Sasitharan (2019-07-01)

 
Avaa tiedosto
An_Information_Theoretic_Framework.pdf (12.81Mt)
Lataukset: 



Akyildiz, Ian F.
Pierobon, Massimiliano
Balasubramaniam, Sasitharan
01.07.2019

Proceedings of the IEEE
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/JPROC.2019.2927926
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202111268686

Kuvaus

Peer reviewed
Tiivistelmä
<p>Over the past 10 years, molecular communication (MC) has established itself as a key transformative paradigm in communication theory. Inspired by chemical communications in biological systems, the focus of this discipline is on the modeling, characterization, and engineering of information transmission through molecule exchange, with immediate applications in biotechnology, medicine, ecology, and defense, among others. Despite a plethora of diverse contributions, which has been published on the subject by the research community, a general framework to study the performance of MC systems is currently missing. This paper aims at filling this gap by providing an analysis of the physical processes underlying MC, along with their information-theoretic underpinnings. In particular, a mathematical framework is proposed to define the main functional blocks in MC, supported by general models from chemical kinetics and statistical mechanics. In this framework, the Langevin equation is utilized as a unifying modeling tool for molecule propagation in MC systems, and as the core of a methodology to determine the information capacity. Diverse MC systems are classified on the basis of the processes underlying molecule propagation, and their contribution in the Langevin equation. The classifications and the systems under each category are as follows: random walk (calcium signaling, neuron communication, and bacterial quorum sensing), drifted random walk (cardiovascular system, microfluidic systems, and pheromone communication), and active transport (molecular motors and bacterial chemotaxis). For each of these categories, a general information capacity expression is derived under simplifying assumptions and subsequently discussed in light of the specific functional blocks of more complex MC systems. Finally, in light of the proposed framework, a roadmap is envisioned for the future of MC as a discipline.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20711]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste