Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Farm detection based on deep convolutional neural nets and semi-supervised green texture detection using VIS-NIR satellite image

Sharifzadeh, Sara; Tata, Jagati; Tan, Bo (2019)

 
Avaa tiedosto
DATA_2019_68.pdf (825.6Kt)
Lataukset: 



Sharifzadeh, Sara
Tata, Jagati
Tan, Bo
2019

doi:10.5220/0007954901000108
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-201910234035

Kuvaus

Peer reviewed
Tiivistelmä
<p>Farm detection using low resolution satellite images is an important topic in digital agriculture. However, it has not received enough attention compared to high-resolution images. Although high resolution images are more efficient for detection of land cover components, the analysis of low-resolution images are yet important due to the low-resolution repositories of the past satellite images used for timeseries analysis, free availability and economic concerns. The current paper addresses the problem of farm detection using low resolution satellite images. In digital agriculture, farm detection has significant role for key applications such as crop yield monitoring. Two main categories of object detection strategies are studied and compared in this paper; First, a two-step semi-supervised methodology is developed using traditional manual feature extraction and modelling techniques; the developed methodology uses the Normalized Difference Moisture Index (NDMI), Grey Level Co-occurrence Matrix (GLCM), 2-D Discrete Cosine Transform (DCT) and morphological features and Support Vector Machine (SVM) for classifier modelling. In the second strategy, high-level features learnt from the massive filter banks of deep Convolutional Neural Networks (CNNs) are utilised. Transfer learning strategies are employed for pretrained Visual Geometry Group Network (VGG-16) networks. Results show the superiority of the high-level features for classification of farm regions.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste