Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable VVC Frame Partitioning based on Lightweight Machine Learning

Amestoy, Thomas; Mercat, Alexandre; Hamidouche, Wassim; Menard, Daniel; Bergeron, Cyril (2019-09-06)

 
Avaa tiedosto
Amestoy_et_al_2019_Tunable_VVC_Frame_Partitioning_based_on_Lightweight_Machine_Learning_TUNICRIS.pdf (10.81Mt)
Lataukset: 



Amestoy, Thomas
Mercat, Alexandre
Hamidouche, Wassim
Menard, Daniel
Bergeron, Cyril
06.09.2019

IEEE Transactions on Image Processing
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TIP.2019.2938670
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202012239157

Kuvaus

Peer reviewed
Tiivistelmä
<p>Block partition structure is a critical module in video coding scheme to achieve significant gap of compression performance. Under the exploration of the future video coding standard, named Versatile Video Coding (VVC), a new Quad Tree Binary Tree (QTBT) block partition structure has been introduced. In addition to the QT block partitioning defined in High Efficiency Video Coding (HEVC) standard, new horizontal and vertical BT partitions are enabled, which drastically increases the encoding time compared to HEVC. In this paper, we propose a lightweight and tunable QTBT partitioning scheme based on a Machine Learning (ML) approach. The proposed solution uses Random Forest classifiers to determine for each coding block the most probable partition modes. To minimize the encoding loss induced by misclassification, risk intervals for classifier decisions are introduced in the proposed solution. By varying the size of risk intervals, tunable trade-off between encoding complexity reduction and coding loss is achieved. The proposed solution implemented in the JEM-7.0 software offers encoding complexity reductions ranging from 30average for only 0.7&#x0025; to 3.0&#x0025; Bjxntegaard Delta Rate (BDBR) increase in Random Access (RA) coding configuration, with very slight overhead induced by Random Forest. The proposed solution based on Random Forest classifiers is also efficient to reduce the complexity of the Multi-Type Tree (MTT) partitioning scheme under the VTM-5.0 software, with complexity reductions ranging from 25&#x0025; to 61&#x0025; in average for only 0.4&#x0025; to 2.2&#x0025; BD-BR increase.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste