Damped Posterior Linearization Filter
Raitoharju, Matti; Garcia-Fernandez, Angel Froilan; Piche, Robert (2018-02-13)
Raitoharju, Matti
Garcia-Fernandez, Angel Froilan
Piche, Robert
13.02.2018
IEEE Signal Processing Letters
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201803281444
https://urn.fi/URN:NBN:fi:tty-201803281444
Kuvaus
Peer reviewed
Tiivistelmä
In this letter, we propose an iterative Kalman type algorithm based on posterior linearization. The proposed algorithm uses a nested loop structure to optimize the mean of the estimate in the inner loop and update the covariance, which is a computationally more expensive operation, only in the outer loop. The optimization of the mean update is done using a damped algorithm to avoid divergence. Our simulations show that the proposed algorithm is more accurate than existing iterative Kalman filters.
Kokoelmat
- TUNICRIS-julkaisut [19294]