Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Factors affecting validity of PVG-power settling time estimation in designing MPP-tracking perturbation frequency

Kivimäki, Jyri; Suntio, Teuvo; Kuperman, Alon (2017-12-18)

 
Avaa tiedosto
IECON2017_Kivimaki.pdf (1.516Mt)
Lataukset: 



Kivimäki, Jyri
Suntio, Teuvo
Kuperman, Alon
18.12.2017

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/IECON.2017.8216418
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201801051032

Kuvaus

Peer reviewed
Tiivistelmä
An open-loop and closed-loop operating boost-power-stage converter with relatively low damping factor exhibit resonant behavior in transient conditions. Such an undamped transient characteristic introduces overshoot to the control-to-output-variable transfer function, which is also visible in the inductor current transient behavior. Therefore, due to the either too large duty ratio or voltage-reference step change, the inductor current can move from continuous conduction mode to discontinuous conduction mode. That transforms the second-order system into an equivalent first-order dynamic system extending the PV-power settling time significantly and reducing power tracking performance of the system. This paper introduces design guidelines to determine maximum perturbation step size for duty ratio and input-voltage reference under open-loop and closed-loop operation, respectively. Two different closed-loop design examples are considered in this paper, based on the application of pure integral controller with phase margin (PM) close to 90 degrees and proportional-integral-derivative controller with PM close to 40 degrees, respectively. The closed-loop system dynamics is known to be characterized by the dominating poles and zeros, which locate closest to the origin. This means that the closed-loop system can be usually characterized by the well-known second-order transfer function. Therefore, the minimum and maximum overshoot of the inductor current can be well approximated as demonstrated by deterministic analysis and experimental results.
Kokoelmat
  • TUNICRIS-julkaisut [20701]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste