Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using GUHA Data Mining Method in Analyzing Road Traffic Accidents Occurred in the Years 2004–2008 in Finland

Turunen, Esko (2017-11-27)

 
Avaa tiedosto
s41019_017_0044_2.pdf (382.4Kt)
Lataukset: 



Turunen, Esko
27.11.2017

Data Science and Engineering
doi:10.1007/s41019-017-0044-2
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201712142364

Kuvaus

Peer reviewed
Tiivistelmä
The suitability of the GUHA data mining method in analyzing a big data matrix is studied in this report in general, and, in particular, a data matrix containing more than 80,000 road traffic accidents occurred in Finland in 2004–2008 is examined by LISp-Miner, a software implementation of GUHA. The general principles of GUHA are first outlined, and then, the road accident data is analyzed. As a result, more than 10,000 associations and dependencies, called hypothesis in the GUHA language, were found; some easily understandable of them are presented here. Our conclusion is that the GUHA method is useful, in particular when one wants to explore relatively small size, but still significant dependencies in a given large data matrix.
Kokoelmat
  • TUNICRIS-julkaisut [20132]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste