Edge and particle embedment effects in low- and high-stress slurry erosion wear of steels and elastomers
Ojala, Niko; Valtonen, Kati; Minkkinen, Jussi; Kuokkala, Veli-Tapani (2017-06-15)
Ojala, Niko
Valtonen, Kati
Minkkinen, Jussi
Kuokkala, Veli-Tapani
15.06.2017
Wear
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
cc by-nc-nd 4.0
cc by-nc-nd 4.0
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201706291625
https://urn.fi/URN:NBN:fi:tty-201706291625
Kuvaus
Peer reviewed
Tiivistelmä
Slurry transportation via pumping is an increasingly viable alternative for the conventional fine particle pumping, but there are also many applications involving larger particles. However, most of the published studies on slurry erosion have been conducted with fine particle sizes. In this work, also large particle slurry erosion of commercial wear resistant materials is studied. A high speed slurry-pot wear tester was used with edge protected samples to simulate the wear conditions in industrial slurry applications where edge wear is minimal. Two wear resistant steels together with natural rubber and polyurethane lining materials were tested, and the results were compared with the results of the same materials tested without sample edge protection. The tests were performed using 15 m/s speed, two sample angles, and slurry concentrations with particle size ranging from large 8/10 mm granite to fine 0.1/0.6 mm quartz. In all conditions, the steel samples showed stable wear behavior, whereas the elastomers gave notably inconsistent results in different test conditions. In general, steels exhibited better wear performance with large particles and elastomers with fine particles, and the wear losses were 40-95 % lower when edge wear was inhibited. With increasing abrasive size, the edge wear becomes more dominant and the particle embedment decreases.
Kokoelmat
- TUNICRIS-julkaisut [19381]