Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian flow sigma point filter for nonlinear Gaussian state-space models

Nurminen, Henri; Piche, Robert; Godsill, Simon (2017)

 
Avaa tiedosto
FUSION2017_postprint.pdf (702.6Kt)
Lataukset: 



Nurminen, Henri
Piche, Robert
Godsill, Simon
2017

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.23919/ICIF.2017.8009682
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201709291974

Kuvaus

Peer reviewed
Tiivistelmä
We propose a deterministic recursive algorithm for approximate Bayesian filtering. The proposed filter uses a function referred to as the approximate Gaussian flow transformation that transforms a Gaussian prior random variable into an approximate posterior random variable. Given a Gaussian filter prediction distribution, the succeeding filter prediction is approximated as Gaussian by applying sigma point moment-matching to the composition of the Gaussian flow transformation and the state transition function. This requires linearising the measurement model at each sigma point, solving the linearised models analytically, and introducing the measurement information gradually to improve the linearisation points progressively. Computer simulations show that the proposed method can provide higher accuracy and better posterior covariance matrix approximation than some state-of-the art computationally light approximative filters when the measurement model function is nonlinear but differentiable and the noises are additive and Gaussian. We also present a highly nonlinear scenario where the proposed filter occasionally diverges. In the accuracy-computational complexity axis the proposed algorithm is between Kalman filter extensions and Monte Carlo methods.
Kokoelmat
  • TUNICRIS-julkaisut [20740]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste