Decorrelation-Based Concurrent Digital Predistortion With a Single Feedback Path
Abdelaziz, Mahmoud; Anttila, Lauri; Kiayani, Adnan; Valkama, Mikko (2017-06-06)
Abdelaziz, Mahmoud
Anttila, Lauri
Kiayani, Adnan
Valkama, Mikko
06.06.2017
IEEE Transactions on Microwave Theory and Techniques
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202002061901
https://urn.fi/URN:NBN:fi:tuni-202002061901
Kuvaus
Peer reviewed
Tiivistelmä
In this paper, a novel decorrelation-based concurrent digital predistortion (DPD) solution is proposed for dual-band transmitters (TXs) employing a single wideband power amplifier (PA), and utilizing only a single feedback receiver path. The proposed decorrelation-based parameter learning solution is both flexible and simple, and operates in a closed-loop manner, opposed to the widely applied indirect learning architecture. The proposed decorrelation-based learning and DPD processing can also be effectively applied to more ordinary single carrier/band transmissions, as well as generalized to more than two transmit bands. Through a comprehensive analysis covering both the DPD parameter learning and the main path processing, it is shown that the complexity of the proposed concurrent DPD is substantially lower compared with the other state-of-the-art concurrent DPD methods. Extensive set of simulation and RF measurement results are also presented, using base-station PAs as well as a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed DPD solution in various real world scenarios, incorporating both single-band and dual-band TX cases. The simulation and RF measurement results demonstrate excellent linearization performance of the proposed concurrent DPD, even outperforming current state-of-the-art methods, despite the significantly lower complexity.
Kokoelmat
- TUNICRIS-julkaisut [19330]