Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint 3D Positioning and Network Synchronization in 5G Ultra-Dense Networks Using UKF and EKF

Koivisto, Mike; Costa, Mario Jorge; Hakkarainen, Aki; Leppänen, Kari; Valkama, Mikko (2016)

 
Avaa tiedosto
koivisto_joint_2016.pdf (267.1Kt)
Lataukset: 



Koivisto, Mike
Costa, Mario Jorge
Hakkarainen, Aki
Leppänen, Kari
Valkama, Mikko
2016

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/GLOCOMW.2016.7848938
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201808282205

Kuvaus

Peer reviewed
Tiivistelmä
It is commonly expected that future fifth generation (5G) networks will be deployed with a high spatial density of access nodes (ANs) in order to meet the envisioned capacity requirements of the upcoming wireless networks. Densification is beneficial not only for communications but it also creates a convenient infrastructure for highly accurate user node (UN) positioning. Despite the fact that positioning will play an important role in future networks, thus enabling a huge amount of location-based applications and services, this great opportunity has not been widely explored in the existing literature. Therefore, this paper proposes an unscented Kalman filter (UKF)-based method for estimating directions of arrival (DoAs) and times of arrival (ToA) at ANs as well as performing joint 3D positioning and network synchronization in a network-centric manner. In addition to the proposed UKF-based solution, a similar extended Kalman filter (EKF)-based method is proposed by extending the existing 2D EKF-based approach to cover also realistic 3D scenarios. Building on the premises of 5G ultradense networks (UDNs), the performance of both methods is evaluated and analysed in terms of DoA and ToA estimation as well as positioning and clock offset estimation accuracy, using the METIS map-based ray-tracing channel model and 3D trajectories for vehicles and unmanned aerial vehicles (UAVs) through the Madrid grid. Based on the comprehensive numerical evaluations, both proposed methods can provide the envisioned one meter 3D positioning accuracy even in the case of unsynchronized 5G network while simultaneously tracking the clock offsets of network elements with a nanosecond-scale accuracy.
Kokoelmat
  • TUNICRIS-julkaisut [20701]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste