Kullback-Leibler Divergence Approach to Partitioned Update Kalman Filter
Raitoharju, Matti; Piche, Robert (2016)
Raitoharju, Matti
Piche, Robert
2016
Signal Processing
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201709191897
https://urn.fi/URN:NBN:fi:tty-201709191897
Kuvaus
Peer reviewed
Tiivistelmä
Kalman filtering is a widely used framework for Bayesian estimation. The partitioned update Kalman filter applies a Kalman filter update in parts so that the most linear parts of measurements are applied first. In this paper, we generalize partitioned update Kalman filter, which requires the use of the second order extended Kalman filter, so that it can be used with any Kalman filter extension such as the unscented Kalman filter. To do so, we use a Kullback-Leibler divergence approach to measure the nonlinearity of the measurement, which is theoretically more sound than the nonlinearity measure used in the original partitioned update Kalman filter. Results show that the use of the proposed partitioned update filter improves the estimation accuracy.
Kokoelmat
- TUNICRIS-julkaisut [19330]