Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolving Smart Meter Data Driven Model for Short-Term Forecasting of Electric loads

Niska, Harri; Koponen, Pekka; Mutanen, Antti (2015-04-07)

 
Avaa tiedosto
Niskaetal_ISSNIP2015_final.pdf (357.8Kt)
Lataukset: 



Niska, Harri
Koponen, Pekka
Mutanen, Antti
07.04.2015

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ISSNIP.2015.7106966
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201808172163

Kuvaus

Peer reviewed
Tiivistelmä
Short-term forecasting of electric loads is an essential function required by Smart Grids. Today increasing amount of smart metering data is available enabling the development of more accurate and adaptive data-driven models for short-term load forecasting. Until now, a plethora of models have been developed ranging from simple statistical regression models to more advanced models such as artificial neural networks (ANNs) and support vector machines (SVMs). Despite the relatively high accuracy obtained, data-driven models are still perceived to be highly complex and nontransparent, thus not allowing engineers and system operators to interpret and understand properly their behavior. Therefore it is important to develop optimization schemes, which can be used to facilitate the selection of appropriate data-driven model structure, and thus improve the acceptance of data-driven models in the domain. This study presents an optimization scheme based on multi-objective genetic algorithm (GA) for designing simple but accurate data-driven models for short-term forecasting of electric loads using smart metering data. The optimization scheme is demonstrated for an ANN model, and the performance of the resulting ANN model is assessed in terms of several performance indices.
Kokoelmat
  • TUNICRIS-julkaisut [20143]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste