Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital design and manufacturing of a railway bogie demonstrator via multi-material wire arc directed energy deposition

Queguineur, Antoine; Daareyni, Amirmohammad; Mokhtarian, Hossein; Isakov, Matti; Rook, Remco; Ya, Wei; Goulas, Constantinos; Hascoët, Jean Yves; Ituarte, Iñigo Flores (2025)

 
Avaa tiedosto
s00170-025-15132-7.pdf (6.836Mt)
Lataukset: 



Queguineur, Antoine
Daareyni, Amirmohammad
Mokhtarian, Hossein
Isakov, Matti
Rook, Remco
Ya, Wei
Goulas, Constantinos
Hascoët, Jean Yves
Ituarte, Iñigo Flores
2025

International Journal of Advanced Manufacturing Technology
doi:10.1007/s00170-025-15132-7
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202502272471

Kuvaus

Peer reviewed
Tiivistelmä
<p>The sequential digital design and manufacturing of components play a crucial role in realizing the industrial potential of directed energy deposition (DED), particularly when employing an electric arc as the energy source to melt a filler wire (DED-ARC). This study explores the application of DED-ARC for manufacturing large-scale, load-bearing structures, using a railway bogie as a case study. Originally a cast Bettendorf-type design, the bogie was redesigned using a multi-material approach. High-strength low-alloy (HSLA) steel was utilized in high-stress areas, while low-carbon steel was used elsewhere to reduce mass, enhance manufacturability, and improve repairability. The workflow included computer-aided design (CAD), topological optimization, finite element analysis (FEA), material selection, and iterative CAD modifications to address process constraints. The redesigned bogie underwent pre-manufacturing, fabrication, and a final scan of the as-built part. Representative multi-material wall samples were characterized, revealing typical microstructures and elastic limits of 468 MPa and 737 MPa for ER70S-6 and ER100S-G, respectively. These tensile properties were incorporated into FEA verification simulations, demonstrating a higher safety factor compared to the original design. A CAD-to-part analysis, including scan comparisons, highlighted manufacturing-induced deformation, material-dependent over-thickness, and localized geometric variations. This study offers a comprehensive overview of the DED-ARC process, from design through characterization, and demonstrates its capability to produce high-quality industrial components. The findings underscore the manufacturability and potential of DED-ARC for fabricating robust, multi-material structures for demanding applications.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20189]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste