Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

SynthSOD: Developing an Heterogeneous Dataset for Orchestra Music Source Separation

Garcia-Martinez, Jaime; Diaz-Guerra, David; Politis, Archontis; Virtanen, Tuomas; Carabias-Orti, Julio J.; Vera-Candeas, Pedro (2025)

 
Avaa tiedosto
SynthSOD_Developing_an_Heterogeneous_Dataset_for_Orchestra_Music_Source_Separation.pdf (616.5Kt)
Lataukset: 



Garcia-Martinez, Jaime
Diaz-Guerra, David
Politis, Archontis
Virtanen, Tuomas
Carabias-Orti, Julio J.
Vera-Candeas, Pedro
2025

IEEE Open Journal of Signal Processing
doi:10.1109/OJSP.2025.3528361
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202502132174

Kuvaus

Peer reviewed
Tiivistelmä
<p>Recent advancements in music source separation have significantly progressed, particularly in isolating vocals, drums, and bass elements from mixed tracks. These developments owe much to the creation and use of large-scale, multitrack datasets dedicated to these specific components. However, the challenge of extracting similarly sounding sources from orchestra recordings has not been extensively explored, largely due to a scarcity of comprehensive and clean (i.e bleed-free) multitrack datasets. In this paper, we introduce a novel multitrack dataset called SynthSOD, developed using a set of simulation techniques to create a realistic, musically motivated, and heterogeneous training set comprising different dynamics, natural tempo changes, styles, and conditions by employing high-quality digital libraries that define virtual instrument sounds for MIDI playback (a.k.a., soundfonts). Moreover, we demonstrate the application of a widely used baseline music separation model trained on our synthesized dataset w.r.t to the well-known EnsembleSet, and evaluate its performance under both synthetic and real-world conditions.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste