Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motion-Vector-Driven Lightweight ROI Tracking for Real-Time Saliency-Guided Video Encoding

Partanen, Tero; Kotajärvi, Miika; Mercat, Alexandre; Vanne, Jarno (2024)

 
Avaa tiedosto
2024_EUSIPCO_ROI_coding_CameraReady.pdf (617.4Kt)
Lataukset: 

URI
https://eurasip.org/Proceedings/Eusipco/Eusipco2024/pdfs/0000521.pdf


Partanen, Tero
Kotajärvi, Miika
Mercat, Alexandre
Vanne, Jarno
2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.23919/EUSIPCO63174.2024.10715465
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202501161474

Kuvaus

Peer reviewed
Tiivistelmä
The huge computation burden of state-of-the-art video coding technologies can be mitigated with Region-of-Interest (ROI) techniques that limit the highest coding effort to salient regions. However, the complexity overhead of saliency detection can easily cancel out the speed gain of ROI coding. This work introduces a lightweight ROI tracking technique that can be used in place of compute-intensive ROI detection to guide a video encoder in inter coding. Low computational overhead is achieved by feeding motion vectors (MVs) of a video encoder back to our neural network that is trained for accurate estimation of ROI movement and size changes. The network training is carried out with our new dataset that is also released in this work to foster the development of head tracking techniques in applications like video conferencing. Our experimental results demonstrate substantial speedups with minimal accuracy tradeoffs over traditional salient object detection (SOD) methods. In scenarios, where a single ROI is tracked with a 64-frame detection interval, our solution obtains up to 50-fold speedup with accuracy of 87% and an average ROI center error of 16 pixels. These results confirm that our ROI tracking approach is a potential technique for low-cost and low-power streaming media applications.
Kokoelmat
  • TUNICRIS-julkaisut [20234]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste