Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Pervasive, Efficient and Private Future: Realizing Privacy-Preserving Machine Learning Through Hybrid Homomorphic Encryption

Nguyen, Khoa; Budzys, Mindaugas; Frimpong, Eugene; Khan, Tanveer; Michalas, Antonis (2024-11-05)

 
Avaa tiedosto
2409.06422v1.pdf (522.2Kt)
Lataukset: 



Nguyen, Khoa
Budzys, Mindaugas
Frimpong, Eugene
Khan, Tanveer
Michalas, Antonis
05.11.2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/DASC64200.2024.00013
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202501141401

Kuvaus

Peer reviewed
Tiivistelmä
Machine Learning (ML) has become one of the most impactful fields of data science in recent years. However, a significant concern with ML is its privacy risks due to rising attacks against ML models. Privacy-Preserving Machine Learning (PPML) methods have been proposed to mitigate the privacy and security risks of ML models. A popular approach to achieving PPML uses Homomorphic Encryption (HE). However, the highly publicized inefficiencies of HE make it unsuitable for highly scalable scenarios with resource-constrained devices. Hence, Hybrid Homomorphic Encryption (HHE) – a modern encryption scheme that combines symmetric cryptography with HE – has recently been introduced to overcome these challenges. HHE potentially provides a foundation to build new efficient and privacy-preserving services that transfer expensive HE operations to the cloud. This work introduces HHE to the ML field by proposing resource-friendly PPML protocols for edge devices. More precisely, we utilize HHE as the primary building block of our PPML protocols. We assess the performance of our protocols by first extensively evaluating each party’s communication and computational cost on a dummy dataset and show the efficiency of our protocols by comparing them with similar protocols implemented using plain BFV. Subsequently, we demonstrate the real-world applicability of our construction by building an actual PPML application that uses HHE as its foundation to classify heart disease based on sensitive ECG data.
Kokoelmat
  • TUNICRIS-julkaisut [20143]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste