Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Q-Learning-Based Resource Management in IRS-Assisted VLC Systems

Hammadi, A. A.; Bariah, L.; Muhaidat, S.; Al-Qutayri, M.; Sofotasios, P. C.; Debbah, M. (2024)

 
Avaa tiedosto
Deep_Q-Learning-Based_Resource_Management_in_IRS-Assisted_VLC_Systems.pdf (1.354Mt)
Lataukset: 



Hammadi, A. A.
Bariah, L.
Muhaidat, S.
Al-Qutayri, M.
Sofotasios, P. C.
Debbah, M.
2024

IEEE Transactions on Machine Learning in Communications and Networking
doi:10.1109/TMLCN.2023.3328501
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202502072069

Kuvaus

Peer reviewed
Tiivistelmä
Visible Light Communication (VLC) is a promising enabling technology for the next-generation wireless networks, as it complements radio-frequency (RF)-based communications by providing wider bandwidth, higher data rates, and immunity to interference from electromagnetic sources. However, due to its unique characteristics, VLC is highly sensitive to the line-of-sight (LoS) blockage. Recently, intelligent reflecting surface (IRS) has been proposed as an innovative solution that dynamically reconfigures the wireless environment. The present contribution proposes a two-stage resource management framework in an indoor VLC system: In the first stage, a maximum possible fairness (MPF) algorithm is presented in order to maximize the fairness amongst the users. In the second stage, deep Q-learning is exploited in order to maximize the overall spectral efficiency (SE). The corresponding numerical results have shown that the proposed DQL-MPF framework exhibits superior performance in terms of both the overall SE and Jain’s Fair Index, achieved at a fast convergence rate. More specifically, when the noise power is high and the number of users is relatively large, the DQL-MPF algorithm achieves a more than tenfold overall SE compared to the Baseline scheme. Moreover, the synergy between the MPF and the DQL algorithms is investigated. To this end, we demonstrate that the MPF algorithm maximizes the fairness amongst the users while the DQL algorithm maximizes the overall SE and improves the robustness against the noise. Our results also highlight the effectiveness of the proposed algorithm in leveraging the increasing number of IRS elements for optimized performance.
Kokoelmat
  • TUNICRIS-julkaisut [20689]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste