Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

R2C-GAN: Restore-to-Classify Generative Adversarial Networks for blind X-ray restoration and COVID-19 classification

Ahishali, Mete; Degerli, Aysen; Kiranyaz, Serkan; Hamid, Tahir; Mazhar, Rashid; Gabbouj, Moncef (2024-12)

 
Avaa tiedosto
1-s2.0-S0031320324005168-main.pdf (3.033Mt)
Lataukset: 



Ahishali, Mete
Degerli, Aysen
Kiranyaz, Serkan
Hamid, Tahir
Mazhar, Rashid
Gabbouj, Moncef
12 / 2024

Pattern Recognition
110765
doi:10.1016/j.patcog.2024.110765
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202409309019

Kuvaus

Peer reviewed
Tiivistelmä
<p>Restoration of poor-quality medical images with a blended set of artifacts plays a vital role in a reliable diagnosis. As a pioneer study in blind X-ray restoration, we propose a joint model for generic image restoration and classification: Restore-to-Classify Generative Adversarial Networks (R2C-GANs). This is the first generic restoration approach forming an Image-to-Image translation task from poor-quality having noisy, blurry, or over/under-exposed images to high-quality image domain where forward and inverse transformations are learned using unpaired training samples. Simultaneously, the joint classification preserves the diagnostic-related label during restoration. Each R2C-GAN is equipped with operational layers/neurons in a compact architecture. The proposed joint model successfully restores images while achieving state-of-the-art Coronavirus Disease 2019 (COVID-19) classification with above 90% in F<sub>1</sub>-Score. In qualitative analysis, the restoration performance is confirmed by medical doctors where 68% of the restored images are selected against the original images. We share the software implementation at https://github.com/meteahishali/R2C-GAN.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20740]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste