Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Streaks and Coping: Decoding Player Performance in League of Legends Using Big Data from Top Players’ Matches

Deng, Dion; Trepanowski, Radoslaw; Li, Mingrui; Zhang, Yin; Bujic, Mila; Hamari, Juho (2024-10-14)

 
Avaa tiedosto
Streaks_and_Coping._Decoding_Player_Performance_in_League_of_Legends_Using_Big_Data_from_Top_Players_Matches.pdf (168.3Kt)
Lataukset: 



Deng, Dion
Trepanowski, Radoslaw
Li, Mingrui
Zhang, Yin
Bujic, Mila
Hamari, Juho
14.10.2024

doi:10.1145/3665463.3678787
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2024111110080

Kuvaus

Peer reviewed
Tiivistelmä
Among athletes and sports fans, it is common to believe that one victory leads to another. Such an effect is known as the hot-hand effect or, simply, a winning streak. This effect was most often associated with traditional sports, however, people participating in electronic sports also tend to believe in it. To explore this venue, we collected 597,680 matches from top players in League of Legends, one of the largest esports games in the world, and analyzed the match data. The findings showed significant but small correlations: winning streaks were associated with improved performance while losing streaks correlated with decreased performance. Players also typically maintained the same champion and lane during winning streaks and tended to switch during losing streaks. Consistency in champion and lane selection was associated with better performance overall. Players also took longer breaks after both winning and losing streaks, which slightly improved performance following losses but had no significant effect after wins. This paper is one of the first ones to test the hot-hand effect with big data in the esports context. Future studies should include players of varying skill levels and regions, incorporate additional performance metrics, and utilize qualitative methods to capture a more comprehensive understanding of player behavior and psychology.
Kokoelmat
  • TUNICRIS-julkaisut [20683]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste