Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced Scientometric Analysis of Scientific Machine Learning and PINNs: Topic Modeling and Trend Analysis

Emmert-Streib, Frank; Tripathi, Shailesh; Farea, Amer; Yli-Harja, Olli (2024)

 
Avaa tiedosto
Advanced_Scientometric_Analysis_of_Scientific_Machine_Learning_and_PINNs_Topic_Modeling_and_Trend_Analysis.pdf (4.039Mt)
Lataukset: 



Emmert-Streib, Frank
Tripathi, Shailesh
Farea, Amer
Yli-Harja, Olli
2024

IEEE Access
doi:10.1109/ACCESS.2024.3481671
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2024121711325

Kuvaus

Peer reviewed
Tiivistelmä
<p>Scientific machine learning and physics-informed neural networks are novel conceptual approaches that integrate scientific knowledge with methods from data science and deep learning. This emerging field has garnered increasing interest due to its unique features and potential applications. However, key topics and subject-specific applications remain under explored. To address this gap, we conducted a scientometric analysis using large-scale bibliographic and citation data from Scopus. Our study provides a global overview of publication and citation trends, explores the co-occurrence of subject areas to uncover multidisciplinary relationships, and identifies the most collaborative fields. Additionally, we employ a Latent Dirichlet Allocation (LDA) model for topic modeling, introducing a novel information-theoretic approach to determine the optimal number of topics. Furthermore, we conduct a trend analysis based on the convergence behavior of entropy and an interpretation grounded in statistical physics, revealing a consolidation process of research directions indicated as an equilibrium state. Lastly, by analyzing Dirichlet distributions from LDA, we estimate the dimension of the transdisciplinarity of scientific machine learning, offering insights into the primary coherent research areas within this field.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20132]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste