Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing specific capacitance and energy density in printed supercapacitors: The role of activated wood carbon and electrolyte dynamics

Pourkheirollah, Hamed; Vitto, Remuel Isaac M.; Volperts, Aleksandrs; Vindt, Steffen Thrane; Grīnberga, Līga; Kučinskis, Gints; Keskinen, Jari; Mäntysalo, Matti (2024-01-08)

 
Avaa tiedosto
Enhancing_specific_capacitance_and_energy_density_in_printed_supercapacitors.pdf (7.000Mt)
Lataukset: 



Pourkheirollah, Hamed
Vitto, Remuel Isaac M.
Volperts, Aleksandrs
Vindt, Steffen Thrane
Grīnberga, Līga
Kučinskis, Gints
Keskinen, Jari
Mäntysalo, Matti
08.01.2024

Carbon Trends
100436
doi:10.1016/j.cartre.2024.100436
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202501021010

Kuvaus

Peer reviewed
Tiivistelmä
This study investigates Activated Wood Carbon (AWC) as an electrode material for advancing printed supercapacitors (SCs). AWC, derived from biomass, offers a sustainable alternative to conventional activated carbons. The research highlights the interplay between AWC's structural properties and electrolyte compatibility, addressing challenges in energy storage technologies. Comprehensive analyses, including sorptometry, Raman spectroscopy, X-ray diffraction (XRD), and electrochemical assessments, reveal that AWC's graphitization and structural ordering significantly influence its performance. Printed SCs fabricated with AWC demonstrate superior performance compared to those using benchmark Kuraray YP-80F activated carbon, achieving up to 93 % and 90 % higher specific capacitance and energy density at 1.0 V and 1.2 V, respectively. The enhanced performance is attributed to AWC's increased surface area and pore volume, which provide abundant ion storage sites and improve ion mobility. Furthermore, the porous structure of AWC facilitates better compatibility with KxHyPO4 electrolytes compared to NaCl, with pseudocapacitive effects also contributing to the improved energy storage behavior. This work underscores the potential of biomass-derived carbon materials in creating high-performance, sustainable SCs. Future efforts will focus on optimizing electrode and electrolyte configurations to further enhance device performance, supporting the transition toward renewable energy solutions.
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste