Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unpacking the diversity of monoterpene oxidation pathways via nitrooxy–alkyl radical ring-opening reactions and nitrooxy–alkoxyl radical bond scissions

Draper, Danielle; Almeida, Thomas Golin; Iyer, Siddharth; Smith, James N.; Kurtén, Theo; Myllys, Nanna (2024-06-11)

 
Avaa tiedosto
1-s2.0-S0021850224000466-main.pdf (2.509Mt)
Lataukset: 



Draper, Danielle
Almeida, Thomas Golin
Iyer, Siddharth
Smith, James N.
Kurtén, Theo
Myllys, Nanna
11.06.2024

Journal of Aerosol Science
106379
doi:10.1016/j.jaerosci.2024.106379
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202405306490

Kuvaus

Peer reviewed
Tiivistelmä
<p>Terrestrial vegetation emits vast quantities of monoterpenes to the atmosphere. These compounds, once oxidized, can contribute to the formation and growth of secondary organic aerosol (SOA) particles. However, studies report widely different SOA yields from atmospheric oxidation of different monoterpenes, despite their structural similarities. The NO<sub>3</sub>-radical-initiated oxidation of α-pinene for instance, leads to minimal SOA yields, whereas with Δ-carene a high SOA yield is observed. A previous study indicated that their oxidation mechanisms diverge after formation of a nitrooxy–alkoxyl radical intermediate, whose C–C bond scission reactions can either lead to early termination of the oxidative chain, thus limiting the yield of condensable vapors, or further propagate it, leading to low-volatility products. In this study, we employ computational methods to investigate these reactions in the NO<sub>3</sub>-radical oxidation of five other monoterpenes: limonene, sabinene, β-pinene, α-thujene and camphene. Additionally, we explore the possibility of rearrangement via ring-opening of the nitrooxy-alkyl radical adducts produced immediately after NO<sub>3</sub> radical attack. Our calculations predict that alkyl radical rearrangement is dominant over O<sub>2</sub>-addition for sabinene, minor but competitive for α-thujene and β-pinene, and negligible for camphene. These rearrangements can induce further propagation of the oxidative chain, and thus higher SOA yields. Concerning alkoxyl radical C–C bond scissions, our results indicate that endocyclic nitrate species (derived from limonene and α-thujene) react preferentially via the channel leading to oxidative chain termination, whereas exocyclic nitrate species (sabinene, β-pinene, and camphene) react preferentially via channels leading to further propagation.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20711]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste