Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing bucket-filling strategies for wheel loaders inside a dream environment

Eriksson, Daniel; Ghabcheloo, Reza; Geimer, Marcus (2024-12-01)

 
Avaa tiedosto
Optimizing_bucket-filling.pdf (4.225Mt)
Lataukset: 



Eriksson, Daniel
Ghabcheloo, Reza
Geimer, Marcus
01.12.2024

Automation in Construction
105804
doi:10.1016/j.autcon.2024.105804
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202410159264

Kuvaus

Peer reviewed
Tiivistelmä
Reinforcement Learning (RL) requires many interactions with the environment to converge to an optimal strategy, which makes it unfeasible to apply to wheel loaders and the bucket filling problem without using simulators. However, it is difficult to model the pile dynamics in the simulator because of unknown parameters, which results in poor transferability from the simulation to the real environment. Instead, this paper uses world models, serving as a fast surrogate simulator, creating a dream environment where a reinforcement learning (RL) agent explores and optimizes its bucket-filling behavior. The trained agent is then deployed on a full-size wheel loader without modifications, demonstrating its ability to outperform the previous benchmark controller, which was synthesized using imitation learning. Additionally, the same performance was observed as that of a controller pre-trained with imitation learning and optimized on the test pile using RL.
Kokoelmat
  • TUNICRIS-julkaisut [20683]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste